
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1174
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Evaluating Categorical Association Rules from
Large Database Using Genetic Algorithm

T. Priyadharsini, D. Vandhana, G. Akila

Abstract- Association rules are one of the most frequently used tools for finding relationships between different attributes in a database. Various
techniques for obtaining the categorical association rules exist. However, when there is a need to relate attributes which are numeric and discrete,
methods which generate quantitative association rules are supposedly used. When the database is extremely large, many of these tools cannot be used.
In this paper, an efficient tool for retrieving the association rules from large databases will be implemented using matrix apriori algorithm and
improvements in the speed at which the algorithm performs.

Index Terms- Association rules, Confidence, Data mining, Fitness Evaluation, Genetic Algorithm, Matrix Apriori Algorithm, Support

—————————— ——————————

1 INTRODUCTION
Data mining (DM) is the extraction of implicit, valid, and
potentially useful knowledge from large volumes of raw
data (Han & Kamber, 2006). In recent years, data size has
grown considerably, which has caused increased difficulty
in extracting useful information. The use of DM to facilitate
decision support can lead to improved decision-making
performance and can enable us to tackle new types of
problems that have not been addressed before (Alcala-Fdez,
Flugy-Pape, Bonarini, & Herrera, 2010; Kamrunnahar &
Urquidi-Macdonald, 2010; Mladenic´, Eddy, & Ziolko, 2001;
Tsumoto, Matsuoka, & Yokoyama, 2008).

Association rules were introduced as a method to
and relationships among the attributes of a database. By
means of these techniques a very interesting qualitative in-
formation with which we can take later decisions can be
obtained. In general terms, an association rule is a relation-
ship between attributes in the way C1) C2, where C1 and
C2 are pair conjunctions (attribute-value) in the way A = v
if it is a discrete attribute or if the attribute is
continuous or numeric. Generally, the antecedent is formed
by a conjunction of pairs, while the consequent usually is a
unique attribute-value pair.

The most used measures to define the interest of
the rules were described in [11]:

• T.Priyadharsini is currently pursuing bachelor’s degree program in

computer science and engineering in SASTRA University, India, PH-
09566379523. E-mail: priyadharsini73@gmail.com

• D.Vandhana is currently pursuing bachelor’s degree program in
computer science and engineering in SASTRA University, India,PH-
08220107347, E-mail: vandhana1192@gmail.com

• G.Akila is currently pursuing bachelor’s degree program in computer
science and engineering in SASTRA University, India,PH-
09566494789,E-mail: akilaganesan.trichy@gmail.com

Support: It is a statistical measure that indicates the ratio of
the population that satisfies both the antecedent and the
consequent of the rule. A rule R: C1=>C2 has a support s, if
an s% of the records of the database contain C1 and C2.
Confidence: This measure indicates the relative frequency
of the rule, that is, the frequency with which the consequent
is fulfilled when it is also fulfilled the antecedent. A rule R:
C1 => C2 has a confidence c, if the c% of the records of the
database that contain C1 also contains C2.

The goal of the techniques that search for
association rules is to extract only those that exceed some
minimum values of support and confidence that are
defined by the user. The greater part of the algorithms that
extract association rules work in two phases: in the first one
they try to find the sets of attributes that exceed the
minimum value of support and, in the second phase,
departing from the sets discovered formerly, they extract
the association rules that exceed the minimum value of
confidence.

2 MATRIX APRIORI ALGORITHM
Resembling Apriori, algorithm Matrix Apriori consists of
two steps. First, discover frequent patterns and second,
generate association rules from the discovered patterns. As
mentioned before, the first step determines the performance
of the algorithm. For this reason, Matrix Apriori presents a
different logic for the first step, but maintains the logic for
the second step identical to that of Apriori, and so for the
rest of this article, we will use the terms “Matrix Apriori”
and “first step of Matrix Apriori” interchangeably. This
section describes in detail the first step of algorithm Matrix
Apriori. This algorithm was developed on the basis of a
critical analysis carried out on both Apriori and FP growth.
The structures used are presented first, and then follows
the pseudo code of the algorithmic procedure.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1175
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.1 Structures for Matrix Apriori
Let L = {i1, i2, …, im} be a set of items, D a repository
containing a set of transactions, ξ a minimal support
predefined by the user, T a transaction, where each
transaction T ⊆ L. Algorithm Matrix Apriori employs two
simple structures for generating frequent patterns: a matrix
called MFI (matrix of frequent items) which holds the set of
frequent items identified during the first traversal of
repository D, and a vector called STE which stores the
support of candidate sets. Frequent items will be
represented by columns of MFI; however, they could also
be represented by rows. In this article we take the first
approach.
DEFINITION 1: The matrix of frequent items MFI is a
structure such that

� Columns represent frequent items found during the
first traversal of D, and rows (except the first row)
represent the candidate sets.
� Element MFI [i, j] = 1 if item j belongs to the (i – 1)th
candidate set; otherwise MFI [i, j] = 0.

DEFINITION 2: The conditional pattern of a k-set of items
groups the set of transactions where the k-set of items is
present.

Call MFI_STE

{The 1-sets of items identified through this

procedure make part of the set of frequent patterns}

call Positions_MFI

for j = NFI downto 2
 Call Frequent_Patterns (str (j))

{str is a function that converts the numeric variable

in variable j into a string}

Endfor

Figure 1: Procedure for Matrix Apriori

Next, we describe the three procedures that constitute the
first step of Matrix Apriori.

2.2 Procedure for Matrix Apriori
 Procedure MFI_STE
This procedure builds matrix MFI and vector STE. The
steps of this procedure are presented in figure 2.

Input: The set of transactions stored in D and an expected
minimal support ξ.

Output: The rows corresponding to candidate sets in MFI,
the support corresponding to each candidate set in vector
STE, the total number of frequent items NFI and the total
number of candidate sets.

1) Traverse repository D with the purpose of identifying the
frequent items set. Firstly, compute the support for each
item that appears in D. Then, identify all those items that
have a support greater than or equal to the minimal
support î; these conform the frequent items set FI. Sort the
elements in FI by ascending support, and determine the
value of NFI.

2) Initialize variable NCS to 0.

3) In the second traversal, for each transaction T in D
do:
• Identify frequent items that are present in T and sort
them by support value, placing the frequent item of
greatest support in the first position. Each resulting set is a
candidate set.
• For the transaction T currently being processed, represent
its candidate set in matrix MFI as specified in Definition 1,
given in section 2.1 Also, accumulate the value of support
of the candidate set in vector STE.

 Figure 2: Procedure MFI_STE

 Procedure Positions_MFI
This procedure turns matrix MFI into an index to speed up
the traversal that identifies frequent patterns in the matrix.
The pseudo code for the procedure is given below.
Input: Matrix MFI, where candidate sets are represented;
the total number of frequent items NFI; and the total
number of candidate sets NCS.
Output: Matrix MFI modified, now containing the rows
where frequent items are present (an index).

procedure Positions_MFI()
for j ← 1 to NFI

{traverse all frequent items}
prev ← 1
for i ← 2 to NCS +1

{traverse all candidate sets}
if (MFI[i, j] <> 0) then

MFI[prev, j] ← i
prev ← i
endif
endfor
endfor

Figure 3: Procedure Postitons_MFI

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1176
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Procedure Frequent_Patterns
This procedure’s objective is the generation of frequent
patterns. This procedure employs the two structures MFI
and STE, and applies the method of growing patterns to
identify the item sets that are frequent patterns. The main
operation of Frequent_Patterns consists of combining the
conditional pattern cp with the frequent items found on its
left hand side in MFI, and to calculate its corresponding
support; then it checks whether the analyzed combination
is a frequent pattern. To reach such conclusion, the
following condition should be met: the calculated support
for the analyzed combination must be greater than or equal
to the minimal support î.

The main operation of Frequent_Patterns consists

of combining the conditional pattern cp with the frequent
items found on its left hand side in MFI, and to calculate its
corresponding support; then it checks whether the
analyzed combination is a frequent pattern. To reach such
conclusion, the following condition should be met: the
calculated support for the analyzed combination must be
greater than or equal to the minimal support ξ.
Input: Matrix MFI already updated with the indexes; vector
STE with the support for each candidate set stored; and the
minimal support î.
Output: Frequent patterns associated to the conditional
pattern cp.

3 GENETIC ALGORITHM
In the computer science field of artificial intelligence, a
Genetic Algorithm (GA) is a search heuristic that mimics
the process of natural evolution. This heuristic is routinely
used to generate useful solutions to optimization and
search problems. Genetic algorithms belong to the larger
class of Evolutionary Algorithms (EA), which generate
solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance,
mutation, selection, and crossover.

3.1. Rank selection
Rank selection sorts the population first according to the
fitness value and then ranks them. Then every chromosome
is allocated selection probability with respect to its rank.
Individuals are selected as per their selection probability.
Rank selection is an explorative technique of selection.
Rank selection prevents too quick convergence and differs
from other selection methods in terms of selection pressure.
Rank selection overcomes the scaling problems like
stagnation or premature convergence. Ranking controls
selective pressure by uniform method of scaling across the

population. Rank selection behaves in a more robust
manner than other methods.
3.2 Crossover
 In genetic algorithm, crossover is a genetic operator used
to vary the programming of a chromosome or
chromosomes from one generation to the next. Cross over is
a process of taking more than one parent solutions and
producing a child solution from them. Many crossover
techniques exist for organisms which use different data
structures to store themselves. Here, the crossover
technique used is single point crossover. In single point
crossover, both parents' organism string is selected. All
data beyond that point in either organism string is
swapped between the two parent organisms. The resulting
organisms are the children.

3.3 Mutation
 Mutation is a genetic operator used to maintain genetic
diversity from one generation of a population of genetic
algorithm chromosomes to the next. It is analogous to
biological mutation. Mutation alters one or more gene
values in a chromosome from its initial state. In mutation,
the solution may change entirely from the previous
solution. Hence GA can come to better solution by using
mutation. Mutation occurs during evolution according to a
user-definable mutation probability. This probability
should be set low. If it is set too high, the search will turn
into a primitive random search.

3.4 Fitness Evaluation
Although there are many measures of the fitness of a rule,
the most representative, and the ones which provide most
information on the quality of the rules, are support and
confidence. In addition, other factors capable of
establishing priority between individuals have been
considered, as explained below. Hence, the evaluation
function which should be maximized for each individual ‘i’
is given by the following equation:

F(i) = (support * ws) + (confidence * wc) +(n attributes * wna)

 As can be seen in (1), each parameter has an associated
weighting factor. It is extremely difficult to establish fixed
values that are valid for solving all the problems. For
example, establishing high values for confidence in
databases with a high level of noise (high degree
of dispersion) (i.e., reward confidence in the rule over the
other measures) can mean that the rules discovered have a
very low value in terms of support, which is not always the
most appropriate case.
 The meaning of each of the parameters of the function
f(i) is as follows:

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1177
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Support: this measure can be affected by the modifier ws. A
high ws value means that the rules obtained have a high
support value, to the detriment of the other parameters. A
low ws value finds rules that have only to meet a limited
number of cases.
 Confidence: this measure can be affected by the modifier
wc. High we values are used when we are interested in
finding error-free rules, and low values when there is
significant noise
in the dataset, and hence the integrity of the rule is not so
important.
N_Attributes: This measure indicates the number of
attributes making up the rule. If rules with a high number
of attributes are to be sought, then a high wna value should
be chosen. In many cases, the user is only interested in
finding associations between a limited number of attributes
and a low wna value is then appropriate.
 The steps involved in Genetic Algorithms are
represented in the fig. 4.

Figure 4: Steps in Genetic Algorithm

4 EXISTING SYSTEM
An evolutionary tool for finding optimized association
rules in databases (both small and large) comprising
quantitative and categorical attributes without the need for
an a priori discretization of the domain of the numeric
attributes. This genetic algorithm finds the best rules, on
the basis of various parameters including support,
confidence, interval amplitude, number of attributes and so
on. Finally, the tool is evaluated using both real and
synthetic databases.

Here, FP-Growth technique is used. When compared
with Apriori algorithm, FP-Growth is efficient. Even then, it
has some drawbacks. When the database is large, it is
sometimes unrealistic to construct a main memory based
FP-Tree. The tree is expensive to build. Time is wasted as
the only pruning that can be done is on items. Support can
only be calculated once the entire dataset is added to the
FP-Tree.

Here, the selection methodology used is Roulette-
wheel. In this selection method, it has higher probability to
select the individuals with higher fitness value. There is a
possibility that it may miss the best individuals. There is no
guarantee that good individual will find their way into next
generation.

5 PROPOSED SYSTEM
 The association rules are generated form databases
comprising of numerical attributes by using the matrix
apriori algorithm. The resulting random association rules
are taken as the initial population for the genetic algorithm.
The optimized result set is achieved by the Genetic
algorithm steps fitness, selection, crossover and mutation.
When compared to the FP-Growth, Matrix Apriori
algorithm is efficient as it speeds up the search pattern. The
selection methodology adopted is the rank selection. Rank
selection sorts the population first according to fitness
value and ranks them. It prevents too early convergence
and differs from roulette wheel convergence in terms of
selection pressure. Rank Selection behaves in a more robust
manner than other methods of selection strategies.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1178
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 5: Optimized Association Rules

Figure 6: Comparison of Matrix Apriori Algorithm and
Genetic Algorithm

6 CONCLUSION
 We have established the association rules with the help of
matrix apriori algorithm. The matrix apriori algorithm
increases the efficiency by speeding up the search. The
association rules are estimated by calculating the support
count and confidence. The genetic algorithm methods
fitness evaluation, selection, crossover and mutation are
implemented which optimizes the random association rules
generated. The fitness evaluation is carried out with the
attributes support, confidence, and number of attributes.

The rank selection technique improves the efficiency of
fitness by selecting the best individuals. At last, the
optimized association rules are established after the
execution of genetic algorithm.

6 REFERENCES

[1] Victoria Pachón Álvarez & Jacinto Mata

Vázquez,(2012). An evolutionary algorithm to
discover quantitative association rules from huge
databases without the need for an a priori
discretization

[2] Anubha Sharma, Nirupma Tivari(2012). A Survey Of
Association Rule Mining Using Genetic Algorithm
Rakesh Kumar, Jyotishree(2012).

[3] Mar´ýa J. del Jesus,1 Jose´ A. Ga´mez,2 Pedro Gonza´
lez1 and Jose´ M.Puerta2 (2011). On the discovery of
association rules by means of evolutionary algorithms

[4] Han, J., & Kamber, M. (2006). Data mining: Concepts
and techniques (2nd ed.)

[5] Blending Roulette Wheel Selection and Rank
Selection in Genetic Algorithm

[6]
ata, J., Alvarez, J. L., & Riquelme, J. C. (2002). An
evolutionary algorithm to discover numeric
association rules (pp. 590–594).

[7] Judith Pavón, Sidney Viana, Santiago Gómez(1996).
Matrix Apriori: Speeding up the Search for Frequent
Patterns

[8] Srikant, R., & Agrawal, R. (1996). Mining quantitative
association rules in large relational tables. SIGMOD
Record (ACM Special Interest Group on Management
of Data), 25, 1–12.

[9] Liu, B., Hsu, W., & Ma, Y. (1998). Integrating
classification and association rule mining (pp. 80 –86).

[10] Peter P. Wakabi-Waiswa and Dr. Venansius
Baryamureeba, “Extraction of Interesting Association
Rules Using Genetic Algorithms”, Advances in
Systems Modeling and ICT Applications, pp. 101-11

[11] R.Agrawal, T.Imielinski, and A.Swami. Mining
association rules between sets of items in large
databases. In Proc. ACM SIGMOD, pages 207{216,
Washington, D.C., 1993

IJSER

