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Abstract- Association rules are one of the most frequently used tools for finding relationships between different attributes in a database. Various 
techniques for obtaining the categorical association rules exist. However, when there is a need to relate attributes which are numeric and discrete, 
methods which generate quantitative association rules are supposedly used. When the database is extremely large, many of these tools cannot be used.     
In this paper, an efficient tool for retrieving the association rules from large databases will be implemented using matrix apriori algorithm and 
improvements in the speed at which the algorithm performs. 
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1 INTRODUCTION 
Data mining (DM) is the extraction of implicit, valid, and 
potentially useful knowledge from large volumes of raw 
data (Han & Kamber, 2006). In recent years, data size has 
grown considerably, which has caused increased difficulty 
in extracting useful information. The use of DM to facilitate 
decision support can lead to improved decision-making 
performance and can enable us to tackle new types of 
problems that have not been addressed before (Alcala-Fdez, 
Flugy-Pape, Bonarini, & Herrera, 2010; Kamrunnahar & 
Urquidi-Macdonald, 2010; Mladenic´, Eddy, & Ziolko, 2001; 
Tsumoto, Matsuoka, & Yokoyama, 2008).  

Association rules were introduced as a method to 
and relationships among the attributes of a database. By 
means of these techniques a very interesting qualitative in- 
formation with which we can take later decisions can be 
obtained. In general terms, an association rule is a relation-
ship between attributes in the way C1) C2, where C1 and 
C2 are pair conjunctions (attribute-value) in the way A = v 
if it is a discrete attribute or  if the attribute is 
continuous or numeric. Generally, the antecedent is formed 
by a conjunction of pairs, while the consequent usually is a 
unique attribute-value pair. 

The most used measures to define the interest of 
the rules were described in [11]: 
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Support: It is a statistical measure that indicates the ratio of 
the population that satisfies both the antecedent and the 
consequent of the rule. A rule R: C1=>C2 has a support s, if 
an s% of the records of the database contain C1 and C2. 
Confidence: This measure indicates the relative frequency 
of the rule, that is, the frequency with which the consequent 
is fulfilled when it is also fulfilled the antecedent. A rule R: 
C1 => C2 has a confidence c, if the c% of the records of the 
database that contain C1 also contains C2. 

The goal of the techniques that search for 
association rules is to extract only those that exceed some 
minimum values of support and confidence that are 
defined by the user. The greater part of the algorithms that 
extract association rules work in two phases: in the first one 
they try to find the sets of attributes that exceed the 
minimum value of support and, in the second phase, 
departing from the sets discovered formerly, they extract 
the association rules that exceed the minimum value of 
confidence. 

 
2 MATRIX APRIORI ALGORITHM 
Resembling Apriori, algorithm Matrix Apriori consists of 
two steps. First, discover frequent patterns and second, 
generate association rules from the discovered patterns. As 
mentioned before, the first step determines the performance 
of the algorithm. For this reason, Matrix Apriori presents a 
different logic for the first step, but maintains the logic for 
the second step identical to that of Apriori, and so for the 
rest of this article, we will use the terms “Matrix Apriori” 
and “first step of Matrix Apriori” interchangeably. This 
section describes in detail the first step of algorithm Matrix 
Apriori. This algorithm was developed on the basis of a 
critical analysis carried out on both Apriori and FP growth. 
The structures used are presented first, and then follows 
the pseudo code of the algorithmic procedure.  
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2.1 Structures for Matrix Apriori 
Let L = {i1, i2, …, im} be a set of items, D a repository 
containing a set of transactions, ξ a minimal support 
predefined by the user, T a transaction, where each 
transaction T ⊆ L. Algorithm Matrix Apriori employs two 
simple structures for generating frequent patterns: a matrix 
called MFI (matrix of frequent items) which holds the set of 
frequent items identified during the first traversal of 
repository D, and a vector called STE which stores the 
support of candidate sets. Frequent items will be 
represented by columns of MFI; however, they could also 
be represented by rows. In this article we take the first 
approach. 
DEFINITION 1: The matrix of frequent items MFI is a 
structure such that 

� Columns represent frequent items found during the 
first traversal of D, and rows (except the first row) 
represent the candidate sets. 
� Element MFI [i, j] = 1 if item j belongs to the (i – 1)th  
candidate set; otherwise MFI [i, j] = 0. 

 
DEFINITION 2: The conditional pattern of a k-set of items 
groups the set of transactions where the k-set of items is 
present. 
 

Call MFI_STE 
 
{The 1-sets of items identified through this 

procedure make part of the set of frequent patterns} 
 
call Positions_MFI 

for j = NFI downto 2 
       Call Frequent_Patterns (str (j)) 

 
{str is a function that converts the numeric variable 

in variable j into a string} 
 
Endfor 

 
Figure 1: Procedure for Matrix Apriori 

 
Next, we describe the three procedures that constitute the 
first step of Matrix Apriori. 
 
2.2 Procedure for Matrix Apriori 
 Procedure MFI_STE 
This procedure builds matrix MFI and vector STE. The 
steps of this procedure are presented in figure 2. 
 
Input: The set of transactions stored in D and an expected 
minimal support ξ. 

Output: The rows corresponding to candidate sets in MFI, 
the support corresponding to each candidate set in vector 
STE, the total number of frequent items NFI and the total 
number of candidate sets. 
 
1) Traverse repository D with the purpose of identifying the 
frequent items set. Firstly, compute the support for each 
item that appears in D. Then, identify all those items that 
have a support greater than or equal to the minimal 
support î; these conform the frequent items set FI. Sort the 
elements in FI by ascending support, and determine the 
value of NFI. 
 
2) Initialize variable NCS to 0. 
 
3) In the second traversal, for each transaction T in D 
do: 
• Identify frequent items that are present in T and sort 
them by support value, placing the frequent item of 
greatest support in the first position. Each resulting set is a 
candidate set. 
• For the transaction T currently being processed, represent 
its candidate set in matrix MFI as specified in Definition 1, 
given in section 2.1 Also, accumulate the value of support 
of the candidate set in vector STE. 
 
 Figure 2: Procedure MFI_STE 
 
 Procedure Positions_MFI 
This procedure turns matrix MFI into an index to speed up 
the traversal that identifies frequent patterns in the matrix. 
The pseudo code for the procedure is given below. 
Input: Matrix MFI, where candidate sets are represented; 
the total number of frequent items NFI; and the total 
number of candidate sets NCS. 
Output: Matrix MFI modified, now containing the rows 
where frequent items are present (an index). 
 
procedure Positions_MFI() 
for j ← 1 to NFI  

{traverse all frequent items} 
prev ← 1 
for i ← 2 to NCS +1  

{traverse all candidate sets} 
if ( MFI[i, j] <> 0 ) then 

MFI[prev, j] ← i 
prev ← i 
endif 
endfor 
endfor 
 

Figure 3: Procedure Postitons_MFI 
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 Procedure Frequent_Patterns 
This procedure’s objective is the generation of frequent 
patterns. This procedure employs the two structures MFI 
and STE, and applies the method of growing patterns to 
identify the item sets that are frequent patterns. The main 
operation of Frequent_Patterns consists of combining the 
conditional pattern cp with the frequent items found on its 
left hand side in MFI, and to calculate its corresponding 
support; then it checks whether the analyzed combination 
is a frequent pattern. To reach such conclusion, the 
following condition should be met: the calculated support 
for the analyzed combination must be greater than or equal 
to the minimal support î. 

 
The main operation of Frequent_Patterns consists 

of combining the conditional pattern cp with the frequent 
items found on its left hand side in MFI, and to calculate its 
corresponding support; then it checks whether the 
analyzed combination is a frequent pattern. To reach such 
conclusion, the following condition should be met: the 
calculated support for the analyzed combination must be 
greater than or equal to the minimal support ξ. 
Input: Matrix MFI already updated with the indexes; vector 
STE with the support for each candidate set stored; and the 
minimal support î. 
Output: Frequent patterns associated to the conditional 
pattern cp. 
 
3 GENETIC ALGORITHM 
In the computer science field of artificial intelligence, a 
Genetic Algorithm (GA) is a search heuristic that mimics 
the process of natural evolution. This heuristic is routinely 
used to generate useful solutions to optimization and 
search problems. Genetic algorithms belong to the larger 
class of Evolutionary Algorithms (EA), which generate 
solutions to optimization problems using techniques 
inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover. 
 
3.1. Rank selection 
Rank selection sorts the population first according to the 
fitness value and then ranks them. Then every chromosome 
is allocated selection probability with respect to its rank. 
Individuals are selected as per their selection probability. 
Rank selection is an explorative technique of selection. 
Rank selection prevents too quick convergence and differs 
from other selection methods in terms of selection pressure. 
Rank selection overcomes the scaling problems like 
stagnation or premature convergence. Ranking controls 
selective pressure by uniform method of scaling across the 

population. Rank selection behaves in a more robust 
manner than other methods. 
3.2 Crossover 
 In genetic algorithm, crossover is a genetic operator used 
to vary the programming of a chromosome or 
chromosomes from one generation to the next. Cross over is 
a process of taking more than one parent solutions and 
producing a child solution from them. Many crossover 
techniques exist for organisms which use different data 
structures to store themselves. Here, the crossover 
technique used is single point crossover. In single point 
crossover, both parents' organism string is selected. All 
data beyond that point in either organism string is 
swapped between the two parent organisms. The resulting 
organisms are the children. 
 
3.3 Mutation 
 Mutation is a genetic operator used to maintain genetic 
diversity from one generation of a population of genetic 
algorithm chromosomes to the next. It is analogous to 
biological mutation. Mutation alters one or more gene 
values in a chromosome from its initial state. In mutation, 
the solution may change entirely from the previous 
solution. Hence GA can come to better solution by using 
mutation. Mutation occurs during evolution according to a 
user-definable mutation probability. This probability 
should be set low. If it is set too high, the search will turn 
into a primitive random search. 
 
3.4 Fitness Evaluation 
Although there are many measures of the fitness of a rule, 
the most representative, and the ones which provide most 
information on the quality of the rules, are support and 
confidence. In addition, other factors capable of 
establishing priority between individuals have been 
considered, as explained below. Hence, the evaluation 
function which should be maximized for each individual ‘i’ 
is given by the following equation:  
 
F(i) = (support * ws) + (confidence * wc) +(n attributes * wna) 
  
    As can be seen in (1), each parameter has an associated 
weighting factor. It is extremely difficult to establish fixed 
values that are valid for solving all the problems. For 
example, establishing high values for confidence in 
databases with a high level of noise (high degree 
of dispersion) (i.e., reward confidence in the rule over the 
other measures) can mean that the rules discovered have a 
very low value in terms of support, which is not always the 
most appropriate case. 
     The meaning of each of the parameters of the function 
f(i) is as follows: 
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Support: this measure can be affected by the modifier ws. A 
high ws value means that the rules obtained have a high 
support value, to the detriment of the other parameters. A 
low ws value finds rules that have only to meet a limited 
number of cases. 
 Confidence: this measure can be affected by the modifier 
wc. High we values are used when we are interested in 
finding error-free rules, and low values when there is 
significant noise 
in the dataset, and hence the integrity of the rule is not so 
important. 
N_Attributes: This measure indicates the number of 
attributes making up the rule. If rules with a high number 
of attributes are to be sought, then a high wna value should 
be chosen. In many cases, the user is only interested in 
finding associations between a limited number of attributes 
and a low wna value is then appropriate.  
 The steps involved in Genetic Algorithms are 
represented in the fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4: Steps in Genetic Algorithm 

4 EXISTING SYSTEM 
An evolutionary tool for finding optimized association 
rules in databases (both small and large) comprising 
quantitative and categorical attributes without the need for 
an a priori discretization of the domain of the numeric 
attributes. This genetic algorithm finds the best rules, on 
the basis of various parameters including support, 
confidence, interval amplitude, number of attributes and so 
on. Finally, the tool is evaluated using both real and 
synthetic databases.  

Here, FP-Growth technique is used. When compared 
with Apriori algorithm, FP-Growth is efficient. Even then, it 
has some drawbacks. When the database is large, it is 
sometimes unrealistic to construct a main memory based 
FP-Tree. The tree is expensive to build. Time is wasted as 
the only pruning that can be done is on items. Support can 
only be calculated once the entire dataset is added to the 
FP-Tree.  

Here, the selection methodology used is Roulette-
wheel. In this selection method, it has higher probability to 
select the individuals with higher fitness value. There is a 
possibility that it may miss the best individuals. There is no 
guarantee that good individual will find their way into next 
generation. 

 
5 PROPOSED SYSTEM 
 The association rules are generated form databases 
comprising of numerical attributes by using the matrix 
apriori algorithm. The resulting random association rules 
are taken as the initial population for the genetic algorithm. 
The optimized result set is achieved by the Genetic 
algorithm steps fitness, selection, crossover and mutation. 
When compared to the FP-Growth, Matrix Apriori 
algorithm is efficient as it speeds up the search pattern. The 
selection methodology adopted is the rank selection. Rank 
selection sorts the population first according to fitness 
value and ranks them. It prevents too early convergence 
and differs from roulette wheel convergence in terms of 
selection pressure. Rank Selection behaves in a more robust 
manner than other methods of selection strategies. 
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Figure 5: Optimized Association Rules 
 
 

 
 

Figure 6: Comparison of Matrix Apriori Algorithm and 
Genetic Algorithm 

 
6 CONCLUSION 
 We have established the association rules with the help of 
matrix apriori algorithm. The matrix apriori algorithm 
increases the efficiency by speeding up the search. The 
association rules are estimated by calculating the support 
count and confidence. The genetic algorithm methods 
fitness evaluation, selection, crossover and mutation are 
implemented which optimizes the random association rules 
generated. The fitness evaluation is carried out with the 
attributes support, confidence, and number of attributes. 

The rank selection technique improves the efficiency of 
fitness by selecting the best individuals. At last, the 
optimized association rules are established after the 
execution of genetic algorithm. 
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